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Abstract
Insect herbivores possess a diverse and abundant gut microbiota that may influence plant growth in nature. The application 
of plant beneficial bacteria to improve agricultural production and soil quality has long been of interest. Thus, these insect-
associated microbiota have the potential to be developed into effective bio-fertilizers. The bacterium, Enterobacter ludwigii, 
was isolated from the regurgitant of field-collected tomato fruitworm, Helicoverpa zea. The bacterium can be secreted by the 
insect onto tomato seeds during fruit feeding and is also commonly found in the soil. We applied E. ludwigii to germinated 
tomato seeds and measured tomato plant growth and productivity under controlled greenhouse conditions. Since there are 
often trade-offs between plant growth and plant defenses, we examined whether the E. ludwigii-mediated faster growth cor-
responds with weaker anti-herbivore defenses. When E. ludwigii was applied to germinated tomato seeds, the plants exhib-
ited faster root, shoot and hypocotyl growth, and produced more fruits and seeds than untreated control plants. The plants 
treated with bacteria exhibited the same activity levels of two key enzymes involved in anti-herbivore defenses, polyphenol 
oxidase and peroxidase, and induced the same levels of mortality and growth inhibition in H. zea larvae as untreated plants. 
Thus, our results demonstrate that the application of E. ludwigii to seeds can promote tomato plant growth and yield without 
compromising anti-herbivore defenses.

Keywords Beneficial microbes · Regurgitant · Growth-defense trade-off · Multitrophic interactions · Peroxidase · 
Polyphenol oxidase

Introduction

Plants live in a microbial milieu; some are beneficial, while 
some are pathogenic. Microbes that can stimulate plant 
development and fitness are termed plant growth-promoting 

bacteria (PGPB). The use of PGPB to improve agricultural 
production has long been of interest (Bashan 1998) and 
their use as bio-fertilizers has recently gained more traction 
as part of sustainable agricultural practices (Javaid 2010; 
Mouhamad et al. 2017; Megali et al. 2014). Particularly, 
growing numbers of studies have described the potential use 
of bacteria isolated from soil (Mayak et al. 2004), rhizo-
sphere (Madhaiyan et al. 2010; de Souza et al. 2013) and 
even honey (Zhang et al. 2015) to enhance plant growth. 
Various bacterial genera have been reported to exert benefi-
cial effects on plant growth and fitness (Glick 2012), includ-
ing Enterobacter (Berger et al. 2013), Kluyvera (Son et al. 
2014), Bacillus (Zhang et al. 2015), and Kosakonia (Berger 
et al. 2017).

The bacterium Enterobacter ludwigii was recently iso-
lated from the regurgitant (gut and salivary juices) of the 
tomato fruitworm, Helicoverpa zea (Wang et al. 2017). 
Helicoverpa zea larvae that were orally inoculated with 
E. ludwigii induced higher plant anti-herbivore responses 
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when feeding on tomato plants than larvae that were not 
inoculated. This was due to bacteria-mediated changes in 
the expression of H. zea salivary proteins. The study dem-
onstrated an important impact of gut bacteria on plant-her-
bivore interactions. When herbivores feed on plants, they 
secrete some of their gut microbiota onto plant tissue via 
regurgitant and saliva. Some of these secreted bacteria can 
elicit physiological responses in plants and positively or 
negatively influence the quality of the plant for herbivore 
growth (Shikano et al. 2017). Interestingly, in contrast to 
the heightened induced defenses of tomato leaves when fed 
on by E. ludwigii-inoculated H. zea, the direct application 
of E. ludwigii onto wounded tomato leaves suppressed anti-
herbivore defenses in the leaves (Wang et al. 2017).

In a previous study, a strain of E. ludwigii, isolated from 
the rhizosphere of wild Elymus tsukushiensis on Dokdo 
Island (South Korea), was shown to produce the plant 
growth-promoting factors indole-acetic acid (IAA) and 
siderophores, which improved pepper plant growth (Son 
et al. 2014). Moreover, grass (Lolium perenne) seeds inocu-
lated with an E. ludwigii strain isolated from field-grown L. 
perenne in Valdivia, Chile, gained more biomass compared 
to non-inoculated grasses (Shoebitz et al. 2009). This E. lud-
wigii strain served as a biological control agent to inhibit the 
development of the fungal phytopathogen, Fusarium solani 
(Shoebitz et al. 2009). Indiragandhi et al. (2008) discovered 
that bacterial isolates from the guts of larval diamondback 
moths (Plutella xylostella) have growth-promoting effects 
on tomato and canola plants. Therefore, in the present study, 
we hypothesized that the strain of E. ludwigii isolated from 
larval H. zea regurgitant may also enhance the growth and 
fitness of the host insect’s food plants.

An important drawback of PGPB-mediated faster plant 
growth has been reduced plant inducible defenses (Megali 
et al. 2014, 2015; Bobadilla et al. 2017). Rapid plant growth 
is often accompanied by a cost to the plant’s defenses (Züst 
and Agrawal 2017). Züst and Agrawal (2017) recently pro-
posed a theoretical unifying framework for growth-defense 
trade-offs as a means to study a plant’s allocation of limiting 
resources. According to this framework, plants must allo-
cate a finite pool of resources to numerous plant functions 
to maintain their biological functioning, including growth, 
reproduction, and resistance to herbivores and pathogens. 
There are many examples demonstrating the negative rela-
tionships between plant growth rates and the strength and 
diversity of defenses (Myers and Sarfraz 2017). For exam-
ple, Arabidopsis plants with higher concentrations of glu-
cosinolates that act as defenses against herbivores exhibited 
slower growth rates (Paul-Victor et al. 2010).

Helicoverpa zea larvae often feed on the fruits of tomato 
plants. As H. zea larvae regurgitate and defecate during 
feeding, copious amounts of gut bacteria will most likely be 
deposited in the fruit, and hence on the seeds (Burkett et al. 

1983). Thus, in the present study, we applied E. ludwigii to 
the seeds of tomatoes. Since the direct application of our E. 
ludwigii strain to tomato leaves suppressed anti-herbivore 
defenses, we hypothesized that suppression of the plant’s 
defenses would divert the plant’s resources, which were allo-
cated for defense, to the plant’s growth and thereby increase 
plant growth rate and yield. Our results clearly demonstrate 
that E. ludwigii enhanced tomato plant growth and yield; 
but contrary to our hypothesis, this bacteria-mediated plant 
growth promotion was not associated with suppressed plant 
defenses. Our study shows that by considering ecological 
plant-insect-microbe interactions, we may be able to identify 
agriculturally beneficial microbes from insects.

Materials and methods

Tomato plants and insects

Tomato (Solanum lycopersicum) seeds of cv. Better Boy 
and Micro Tom were used in this study. We used Better Boy 
to measure plant growth rate and chemical anti-herbivore 
defense parameters. Better Boy has an indeterminate growth 
type and is one of the most widely grown hybrid tomato 
varieties in the United States. We used Micro Tom to meas-
ure plant yield because it has a dwarf-determinate growth 
type. All plants were grown in a climate-controlled green-
house at 25 °C with a photoperiod of 16L:8D at Penn State 
University (University Park, PA, USA).

Helicoverpa zea eggs were originally purchased from 
Frontier Agriculture Sciences (Newark, DE, USA). Colo-
nies were maintained in the laboratory on a wheat germ and 
casein-based artificial diet in a growth chamber set at 25 °C 
(day) and 18 °C (night) with a photoperiod of 16L:8D.

Bacterial culture

Enterobacter ludwigii isolated from the regurgitant of field-
collected H. zea larvae by Wang et al. (2017) was used in all 
experiments. For long-term storage, the bacterial culture was 
maintained at − 80 °C in 2 × YT liquid media with addition 
of 50% glycerol. The bacteria were incubated in a rotary 
shaker overnight at 200 rpm at 27 °C. Subsequently, the 
bacterial culture was centrifuged at 5000×g for 10 min. The 
bacterial pellet was then re-suspended with double distilled 
water, and adjusted to a density of  109 colony-forming units 
(CFU) mL−1  (OD600 = 0.1) for use.

Seed treatment

All seeds were surface sterilized with 1.8% NaClO followed 
by 0.02% Triton-X for 15 min, rinsed with double distilled 
water twice for 10 min, and allowed to germinate in a Petri 
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dish on wet filter paper. To compare the difference between 
bacteria-treated plants and untreated plants, germinated 
seeds were soaked in a bacterial suspension or double dis-
tilled water for 3 h, then individually transplanted in 10-cm 
plastic pots containing sterilized (autoclaved) professional 
growing mix (Sunshine Mix 4 Aggregate Plus). Plants were 
maintained in a climate-controlled greenhouse at 25 °C and 
16L:8D.

Plant growth

Tomato cv. Better Boy was used to measure plant growth 
parameters. Three trials were conducted at three different 
times. Plants in trial 1 were grown during May to June of 
2016; plants in trial 2 were grown during May of 2017, and 
plants in trial 3 were grown during June of 2017. In trial 1, 
we measured root and hypocotyl lengths. In trials 2 and 3, 
we measured the lengths and weights of the roots, shoots, 
and hypocotyls. In trials 1 and 2, plant growth measure-
ments were taken at 11 days after germinated seeds were 
sown in 10-cm plastic pots (11-day-old plants). We grew 
24 untreated and 21 E. ludwigii-treated plants in trial 1, 
and 10 plants for each treatment in trial 2. In trial 3, plants 
were fertilized with 2 g of Osmocote Plus 15-9-12 (Scotts, 
Marysville, OH, USA) 10 days after germinated seeds were 
sown in individual pots. On the same day as fertilization, 
we supplemented the E. ludwigii-treated plants with a soil 
application of E. ludwigii consisting of a 5 mL bacterial sus-
pension  (109 CFU mL−1). We grew 22 untreated and 21 E. 
ludwigii-treated plants in trial 3. Five millilitre of water was 
applied to the soil of control plants. Fifteen days later (25-
day old plants), the plant growth parameters were measured.

Plant fitness

Tomato cv. Micro Tom was used to evaluate the influence of 
E. ludwigii on productivity. The plants were maintained for 
106 days (December 2016 to March 2017) and the experi-
ment was terminated when plants stopped producing new 
fruits; we grew 20 plants for each treatment. Germinated 
seeds and seedlings were treated with the bacterial suspen-
sion or water, and plants were fertilized as described above 
for 25-day-old plants. The total number of flowers and rip-
ened fruits was monitored for both treatments; all seeds were 
then collected and counted from the harvested ripened fruits.

Plant anti‑herbivore defenses

Tomato cv. Better Boy was used to test the effects of bacte-
rial treatment on plant anti-herbivore defenses; 25-day-old 
plants, which were in the 5–6 leaf stage, were used. Plants 
were grown at the same time as the plants used in trial 3 of 
the plant growth experiment, and were treated with bacteria 

and grown as described above. To induce an anti-herbivore 
response in the plants, one mid-5th instar H. zea was placed 
in a clip-cage (2 cm in diameter) on the second youngest 
fully expanded leaf. The larvae were allowed to feed for 
up to 3 h to consume the entire leaf area inside the cage. 
The larvae and cages were subsequently removed. Induced 
anti-herbivore responses in tomato plants peak at approxi-
mately 48 h after damage occurs (Constabel et al. 1995). 
Thus, after 48 h, we collected a 50 mg sample of plant tis-
sue from the damaged leaf, immediately froze the sample 
in liquid nitrogen and stored it at − 80 °C. The samples 
were used to assess the activities of two key anti-herbivore 
defensive enzymes in tomato. The remaining tissue from 
each damaged leaf was used to measure H. zea larval growth 
and mortality, as described below. Empty clip-cages were 
placed on control plants, and leaf samples were collected as 
described for H. zea-damaged leaf tissue; 20–31 plants were 
used in each treatment group (E. ludwigii-treatment by H. 
zea damage-treatment).

Plant defense against insect herbivory

The excised tissue from each plant was equally divided into 
two plastic cups such that there were two replicates for each 
plant. One 2-day-old larva was weighed to the nearest 0.1 mg 
and placed in a 30 mL plastic cup with the excised leaf tis-
sue. Cups were lined with 1% agar to prevent leaves from 
desiccating. The larvae were fed for 5 days. Since there were 
two replicates (larvae) per plant, mortality was recorded as 
100% (two dead larvae), 50% (one dead larva), and 0% (both 
larvae alive) for each plant. Larvae that survived for 5 days 
were weighed and the weight gained was calculated.

Tomato defensive enzyme activity and protein content

The enzymatic activities of peroxidase (POD) and polyphe-
nol oxidase (PPO) were measured according to Felton et al. 
(1989) with some modifications. Frozen leaf tissue was col-
lected and ground in a 2-mL tube using a GenoGrinder 2000 
(Spex SamplePrep, Metuchen, NJ, USA). The ground sample 
was then homogenized immediately in 1.25 mL of extraction 
buffer (0.1 M potassium phosphate buffer, pH 7.0) contain-
ing 5% insoluble polyvinylpolypyrrolidone (PVP) and main-
tained on ice for 5 min. The suspension was then centrifuged 
at 11,000×g for 10 min at 4 °C. The supernatants were used 
as the enzyme sources for both assays. To measure POD 
activity, 5 µL of supernatant was mixed with a substrate 
consisting of 10 µL of 3% hydrogen peroxide and 190 µL of 
3 mM guaiacol in 0.1 M potassium phosphate buffer. The 
change in absorbance was measured at 450 nm for 5 min. To 
measure PPO activity, 5 µL of supernatant from each sample 
was mixed with 200 µL of a substrate consisting of 3 mM 
caffeic acid in 0.1 M potassium phosphate buffer, and the 
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change in absorbance was measured at 450 nm for 5 min. 
The total protein content in tomato leaves was determined 
by Bradford assay for each sample, using a dilution series of 
bovine serum albumin (BSA) to produce a standard curve.

Statistical analysis

Plant growth, productivity, and protein content measures 
were analyzed using Student’s t-test to compare differences 
between bacteria-treated and untreated control plants using 
SPSS (version 19.0; SPSS Inc., Chicago, IL, USA) soft-
ware. Plant enzyme activities and insect mortality data were 
compared between treatments using a general linear model 
(GLM) with MINITAB (Minitab Inc., State College, PA, 
USA).

Results

Plant growth

11-day-old plants (trials 1 and 2)

Treatment of germinated seeds with E. ludwigii enhanced 
all of the growth parameters of 11-day-old tomato plants 
cv. Better Boy (Fig. 1A, B). In trial 1, E. ludwigii-treated 
plants had significantly longer root length  (t1,43 = −3.349, 
P = 0.0020) and hypocotyl length (t1,43 = -4.674, P = 0.0001) 
than untreated plants (root length = 20.07 cm and 16.41 cm, 
respectively; hypocotyl length = 4.3 cm and 3.35 cm, respec-
tively). In trial 2, the mean root length of E. ludwigii-treated 
plants was significantly longer than the roots of untreated 
plants (Fig. 2A: 23.36 cm and 19.31 cm, respectively; t 
test, t(18) = -2.631, P = 0.0170). The root weight of E. lud-
wigii-treated plants was much heavier than untreated plants 
(Fig. 2B: t(18) = − 3.227, P = 0.0050). Also, shoot length of 
E. ludwigii-treated plants was longer than untreated plants 
(Fig. 2C: t(18) = − 3.428, P = 0.0030) and shoot weight of 
E. ludwigii-treated plants was greater than untreated plants 
(Fig. 2D: t(18) = − 6.435, P = 0.0001). Lastly, the hypocotyl 
length was longer in E. ludwigii-treated plants (Fig. 2E: 
t(18) = − 2.441, P = 0.025) and the weight of the hypocotyl 
was heavier in E. ludwigii-treated plants than untreated 
plants (Fig. 2F: t(18) = − 6.103, P = 0.0001).

25-day-old plants (trial 3)

Bacteria did not make a significant difference in the mean 
root length of 25-day-old plants (Fig. 2G: t(41) = − 0.886, 
P = 0.3810), possibly because the plants were grown 
in small pots, such that the growth of their main root 
was restricted. However, the root weight was heavier 
in E. ludwigii-treated plants (Fig.  2H: t(41) = − 6.242, 

P = 0.0001). Also, shoot length of E. ludwigii-treated 
plants was longer than untreated plants (Fig.  2I: 
t(41) = − 3.642, P = 0.0010) and consequently weighed 
more (Fig. 2J: t(41)t(41) = − 7.161, P = 0.0001). The length 
(Fig. 2K: t(41) = − 1.493, P = 0.1430) and weight (Fig. 2L: 
t(41) = − 0.885, P = 0.3810) of hypocotyls were not signifi-
cantly different between 25-day-old E. ludwigii-treated and 
untreated plants.

Plant fitness

Compared to untreated tomato plants, tomato plants cv. 
Micro Tom treated with E. ludwigii produced significantly 
more fruits (Figs. 1C, D, 3B, t(38) = − 2.288, P = 0.0280), 
which resulted in a higher production of seeds per plant 
(Fig.  3C, t(38) = − 2.257, P = 0.0300). This higher yield 
occurred despite the fact that bacteria-treated plants did 
not produce significantly more flowers per plant (Fig. 3A, 
t(38) = − 0.584, P = 0.5630).

Fig. 1  Examples showing the growth of untreated (A) and E. lud-
wigii-treated (B) 11-day-old tomato plants cv. Better Boy, the yield of 
untreated (C) and E. ludwigii-treated (D) tomato plants cv. Micro Tom 
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Foliar protein content

The mean protein content in the leaves of tomato plants 
cv. Better Boy treated with E. ludwigii tended to be higher 
than in untreated plants, though not significantly (Fig. 4, 
t(41) = − 1.94, P = 0.059).

Plant defense

Helicoverpa zea feeding damage induced significantly 
higher POD (Fig. 5A; F1,101 = 47.33, P = 0.0001) and PPO 
(Fig. 5B; F1,101 = 69.69, P = 0.0001) activities. Treatment 
of plants with E. ludwigii did not influence enzyme activi-
ties in damaged or undamaged plants (POD: F1,101 = 0, 
P = 0.945; PPO: F1,101 = 0.13, P = 0.7230). H. zea larvae 
that fed for 5 days on excised tomato leaves that were pre-
viously damaged by H. zea larvae exhibited significantly 
lower weight (Fig. 6A; F1,104 = 6.3, P = 0.0140) and higher 
mortality (Fig. 6B; F1,104 = 14.55, P = 0.0010) than lar-
vae fed on undamaged tomato leaves. Treatment of plants 
with E. ludwigii had no significant effect on larval weight 
(Fig. 6A; F1,104 = 0.22, P = 0.6380) or mortality (Fig. 6B; 
F1,104 = 0.13, P = 0.7210). There were no significant inter-
actions between bacteria and induction treatments.

Discussion

PGPB are beneficial for plants in many ways (Bashan 
and de-Bashan 2005; Vessey 2003) and have been widely 
used in the field as bio-fertilizers in sustainable agricul-
tural systems (Bhardwaj et al. 2014). Here, our results 
demonstrate that tomato plants treated with E. ludwigii, 
which was isolated from the regurgitant of tomato fruit-
worm larvae, exhibited significantly enhanced growth 
rates and reproductive output. These findings suggest that 
our isolate of E. ludwigii can be considered a PGPB. More 
importantly, from an ecological perspective, our findings 
suggest that the bacteria deposited by a fruit-feeding insect 
into the fruit, and consequently on seeds, may benefit the 
growth and fitness of the plant’s offspring. This highlights 

complex interactions between plants, their herbivores and 
microbes.

Interestingly, the length of roots, which were signifi-
cantly longer in E. ludwigii-treated plants at 11 days post 

Fig. 2  Effects of E. ludwigii seed treatment on the main root length 
(A), root weight (B), shoot length (C), shoot weight (D), hypocotyl 
length (E), and hypocotyl weight (F) of tomato plants (cv. Better Boy) 
at 11 days post-germination (trial 2), and the effects of E. ludwigii 
seed treatment on the main root length (G), root weight (H), shoot 
length (I), shoot weight (J), hypocotyl length (K), and hypocotyl 
weight (L) of tomato plants (cv. Better Boy) at 25 days post germina-
tion (trial 3). Bars with different letters represent a significant differ-
ence between treatments (means ± standard error) for each measure-
ment date (P < 0.05)

▸
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germination, were not significantly different from untreated 
plants at 25 days post germination. However, the roots of 
E. ludwigii-treated plants at both 11 and 25 days post ger-
mination were heavier than the roots of untreated plants, 
either from thicker roots or greater root branching, indicat-
ing a stronger root system. Studies suggest that endogenous 
application of auxin helps increase the structure of the plant 
root system (Perez-Torres et al. 2008). Many plant-beneficial 
bacteria are able to increase the plant’s uptake of nutrients, 
such as N, P, and K, by synthesizing natural auxin, indole-
3-ethanol or indole-3-acetic acid (IAA) (Patten and Glick 
1996), which can then stimulate root systems and plant 
growth (Hayat et al. 2010). IAA can be found throughout 
the body of the plant (Shoebitz et al. 2009).

Even though our E. ludwigii strain enhanced tomato plant 
growth rate, and hence yield, there was no cost to the plant 
in terms of the anti-herbivore defenses we measured (i.e., 
no growth-defense trade-off). It is well known that PPO and 
POD are important plant oxidative enzymes against herbi-
vores by reducing their nutrients digestibility (Felton et al. 
1989, 1992). Megali et al. (2014) previously showed that 
inoculation of tomato plants with a concoction of beneficial 

Fig. 3  Effects of E. ludwigii seed treatment on the mean numbers 
of flowers (A), fruits (B), and seeds (C) of tomato plants (cv. Micro 
Tom). Bars with different letters indicate a significant difference 
between treatments (means ± standard error) (P < 0.05)

Fig. 4  Effect of E. ludwigii seed treatment on the protein content 
(mg protein/g tissue) of tomato plants (cv. Better Boy). Values are the 
means ± standard error (n = 21 in each treatment). Protein content in 
E. ludwigii-treated plants tended to be higher than in untreated plants, 
though not significantly (P = 0.059)

Fig. 5  Effects of E. ludwigii seed treatment on peroxidase (A) activ-
ity and polyphenol oxidase (B) activity in tomato plants (cv. Better 
Boy) that were undamaged or previously damaged by larvae feeding 
(i.e., defense induced). Bars with different letters indicate a signifi-
cant difference between induction treatments (means ± standard error; 
n = 20–31 for each treatment) (P < 0.05)
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microorganisms enhanced plant yield but significantly 
reduced the concentration of jasmonic acid in leaves against 
Egyptian cotton leafworms (Spodoptera littoralis). In some 
studies, beneficial soil microorganisms have been shown to 
enhance plant defenses. For example, inoculation of Arabi-
dopsis plants with PGPB increased the tissue concentrations 
of glucosinolates, which provided greater protection against 
insect herbivores (Aziz et al. 2016; Pangesti et al. 2016). 
Thus, the PGPB-mediated growth promotion in plants can 
have negative or positive effects on plant defenses, depend-
ing on PGPB species. Importantly, our results suggest that 
our E. ludwigii strain has the potential to be used for plant 
growth-promotion without increasing the need for chemical 
or biological pest control.

To conclude, inoculation of germinated tomato seeds with 
bacteria isolated from an herbivore’s gut enhanced plant 
growth rate, protein content and fruit yield, without compro-
mising anti-herbivore defenses of the plants. The potential 
role of insect-associated bacteria in stimulating plant fitness 
has only recently gained attention. Therefore, further studies 
will examine other microbial inhabitants of herbivore guts to 
influence plant growth, and their potential roles in ecological 
interactions and use as bio-fertilizers. We will also examine 
the ability of E. ludwigii to enhance the growth of other agri-
culturally valuable crop species. Understanding the complex 

interactions between microbes, plants and herbivores will be 
important in identifying bio-fertilizers that not only enhance 
plant growth, but also maximize agricultural production by 
maintaining or improving plant resistance against herbivores 
and diseases. Using microbes that are relevant (i.e., naturally 
present) in a specific agroecosystem could improve the effec-
tiveness of bio-fertilizers in sustainable agricultural systems.
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